2023 - Day 25

This commit is contained in:
Dreaded_X 2023-12-25 17:05:00 +01:00
parent 7951f60e7f
commit 7f398eed00
Signed by: Dreaded_X
GPG Key ID: 5A0CBFE3C3377FAA
4 changed files with 1397 additions and 0 deletions

View File

@ -9,6 +9,7 @@ edition = "2021"
anyhow = "1.0.75"
lazy_static = "1.4.0"
nalgebra = "0.32.3"
petgraph = "0.6.4"
regex = "1.10.2"
[features]

1211
2023/input/25/input Normal file

File diff suppressed because it is too large Load Diff

13
2023/input/25/test-1 Normal file
View File

@ -0,0 +1,13 @@
jqt: rhn xhk nvd
rsh: frs pzl lsr
xhk: hfx
cmg: qnr nvd lhk bvb
rhn: xhk bvb hfx
bvb: xhk hfx
pzl: lsr hfx nvd
qnr: nvd
ntq: jqt hfx bvb xhk
nvd: lhk
lsr: lhk
rzs: qnr cmg lsr rsh
frs: qnr lhk lsr

172
2023/src/bin/day25.rs Normal file
View File

@ -0,0 +1,172 @@
#![feature(test)]
#![feature(iter_map_windows)]
use std::collections::{HashMap, HashSet, VecDeque};
use anyhow::Result;
use aoc::Solver;
use petgraph::{
algo::{condensation, has_path_connecting},
graphmap::{GraphMap, UnGraphMap},
visit::IntoNodeReferences,
Undirected,
};
// -- Runners --
fn main() -> Result<()> {
Day::solve()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn part1_test1() -> Result<()> {
Day::test(Day::part1, "test-1", 54)
}
#[test]
fn part1_solution() -> Result<()> {
Day::test(Day::part1, "input", 552695)
}
// Benchmarks
extern crate test;
#[bench]
#[ignore]
fn part1_bench(b: &mut test::Bencher) {
Day::benchmark(Day::part1, b)
}
#[bench]
#[ignore]
fn part2_bench(b: &mut test::Bencher) {
Day::benchmark(Day::part2, b)
}
}
// Totally copied this from: https://github.com/Zemogus/AOC-2023/blob/328dc6618f3a360c3d3851ad1b10513a6c133336/src/day25.rs
// For some reason the graph library has no dijkstra that returns the actual path
fn find_shortest_path<'a>(
graph: &GraphMap<&'a str, (), Undirected>,
start: &'a str,
end: &'a str,
) -> Option<Vec<&'a str>> {
let mut queue = VecDeque::new();
let mut visited = HashSet::new();
let mut parents = HashMap::new();
queue.push_back(start);
while let Some(node) = queue.pop_front() {
// Already visited this node
if !visited.insert(node) {
continue;
}
// Reached the destination
if node == end {
break;
}
for neighbour in graph.neighbors(node) {
if !visited.contains(neighbour) {
parents.insert(neighbour, node);
queue.push_back(neighbour);
}
}
}
let mut path = Vec::new();
let mut node = end;
while node != start {
path.push(node);
if let Some(parent) = parents.get(&node) {
node = parent;
} else {
return None;
}
}
path.push(start);
Some(path)
}
// -- Solution --
pub struct Day;
impl aoc::Solver for Day {
type Output1 = usize;
type Output2 = usize;
fn day() -> u8 {
25
}
fn part1(input: &str) -> Self::Output1 {
// Create a list of all edges
let edges: Vec<_> = input
.lines()
.flat_map(|line| {
let (a, rest) = line.split_once(": ").unwrap();
rest.split(' ').map(|b| (a, b)).collect::<Vec<_>>()
})
.collect();
// Create a graph from all the edges
let graph = UnGraphMap::<_, ()>::from_edges(edges);
// Take a node as the starting point
let start = graph.nodes().next().unwrap();
// Loop over all other nodes
for end in graph.nodes() {
// Make a copy of the graph so we can modify it and undo changes later
let mut graph = graph.clone();
if start == end {
continue;
}
// If the two nodes are on the same side there should be more then three paths
// connecting the nodes together
// At least I think???
// This solution worked, so ¯\_(ツ)_/¯
for _ in 0..3 {
// Find the current shortest path
let path = find_shortest_path(&graph, start, end).unwrap();
// Remove the path
for slice in path.windows(2) {
match slice {
[a, b] => graph.remove_edge(a, b),
_ => unreachable!(
"There should be three paths connecting all the nodes together"
),
};
}
}
// If there is no path connecting the two nodes we have removed the three edges
// connecting the two halves
if !has_path_connecting(&graph, start, end, None) {
// Condense the graph, creates a new graph where each node contains all nodes that
// where connected in the input node
let condensed = condensation(graph.into_graph::<usize>(), false);
// The should give us two nodes each containing all the nodes in their respective
// half if we split the graph
if condensed.node_count() != 2 {
continue;
}
// Multiply the size of each of the halves together giving the final solution
return condensed
.node_references()
.fold(1, |acc, (_, nodes)| acc * nodes.len());
}
}
unreachable!("No solution found");
}
fn part2(_input: &str) -> Self::Output2 {
0
}
}