#include #include #include #include #include "control.h" #include "io.h" #include "bsp_driver_sd.h" #include "profiling.h" // The top 4 address bits determine which device is used. (16 pages, 256 devices) // 0xFF means that the device does not exist // WATCH OUT THE DEVICE ADDRESS NEED TO BE REVERSED (MSB IS ON THE RIGHT) uint8_t memory_map_0[16] = {0b00010000, 0b10001000, 0b01001000, 0b11001000, 0b00101000, 0b10101000, 0b01101000, 0b11101000, 0b00011000, 0b10011000, 0b01011000, 0b11011000, 0b00111000, 0b10111000, 0b01111000, 0b11111000}; uint8_t memory_map_1[16] = {0b00001000, 0b10001000, 0b01001000, 0b11001000, 0b00101000, 0b10101000, 0b01101000, 0b11101000, 0b00011000, 0b10011000, 0b01011000, 0b11011000, 0b00111000, 0b10111000, 0b01111000, 0b11111000}; Control control; // @todo For some reason increasing SD_PAGES does not work #define SD_PAGES 1 #define CPM_PAGE_SIZE 128 #define SD_PAGE_SIZE 512 #define CPM_PAGES (SD_PAGE_SIZE/CPM_PAGE_SIZE*SD_PAGES) uint8_t get_device(uint16_t address) { uint8_t page = address >> 12; if (control.memory_config == 0) { return memory_map_0[page]; } else if (control.memory_config == 1) { return memory_map_1[page]; } return 0xFF; } uint32_t calculate_lba() { uint32_t temp = (control.storage.lba_1) + (control.storage.lba_2 << 8) + (control.storage.lba_3 << 16); if (temp/CPM_PAGES != control.storage.lba/CPM_PAGES) { control.storage.dirty |= 1; } /* printf("LBA [1]: %li\n\r", control.storage.lba_1); */ /* printf("LBA [2]: %li\n\r", control.storage.lba_2); */ /* printf("LBA [3]: %li\n\r", control.storage.lba_3); */ /* printf("LBA: %li\n\r", control.storage.lba); */ return temp; } void control_program_eeprom(uint8_t* data, uint16_t length) { // Take control of the bus printf("Taking control of bus...\n\r"); send_busrq(1); while (!has_busak()) { control_execute_state(); } printf("Done!\n\r"); printf("Writing to ROM...\n\r"); enable_address_out(1); select_device(memory_map_0[0]); for (uint16_t i = 0; i < length; ++i) { write_address(i); write_data(data[i]); enable_data_out(1); send_memrq(1); send_wr(1); send_wr(0); enable_data_out(0); send_rd(1); printf("%i/%i\r", i+1, length); for (;;) { uint8_t d = read_data(); if (d == data[i]) { break; } } send_rd(0); send_memrq(0); } enable_address_out(0); // Release the bus again send_busrq(0); // Restart the z80 control_reset(); printf("\n"); } void handle_memrq() { uint16_t address = read_address(); uint8_t device = get_device(address); select_device(device); } void handle_io_read() { uint8_t address = read_address() & 0xFF; switch (address) { // @todo This should be detected on startup // Stand in for graphics hardware /* case 0x03: */ /* write_data(0x01); */ /* break; */ // Stand in for the keyboard hardware /* case 0x1E: */ /* write_data(control.input.c); */ /* control.input.received = 0; */ /* break; */ // Stand in for the keyboard hardware /* case 0x1F: */ /* write_data(0x01 * control.input.received); */ /* break; */ case 0x08: if (control.storage.ready && control.storage.action == 0x20) { write_data(control.storage.buffer[control.storage.counter + (control.storage.lba % CPM_PAGES)*CPM_PAGE_SIZE]); control.storage.counter++; if (control.storage.counter >= CPM_PAGE_SIZE) { control.storage.ready = 0; control.storage.action = 0; } } else { write_data(0x00); } break; case 0x0f: // Check if we need to read and in that case to the read if (control.storage.action && !control.storage.ready) { if (!control.storage.dirty || BSP_SD_ReadBlocks((uint32_t*)control.storage.buffer, control.storage.lba/CPM_PAGES, SD_PAGES, SD_DATATIMEOUT) == MSD_OK) { // Indicate that we are ready to read/write control.storage.ready = 1; control.storage.dirty = 0; } else { // If we failed to read we will try again next time /* printf("READ FAIL!\n\r"); */ } } write_data(0x08*control.storage.ready); break; default: { /* uint8_t value = read_data(); */ /* #<{(| if (value == 0) { |)}># */ /* printf("IO Read: %.2X @ %.2X\n\r", value, address); */ /* #<{(| } |)}># */ return; } } enable_data_out(1); } void handle_io_write() { uint8_t address = read_address() & 0xFF; uint8_t value = read_data(); switch (address) { case 0x00: control.memory_config = 0; break; case 0x01: control.memory_config = 1; break; case 0x02: printf("%c", value); break; case 0x08: if (control.storage.ready && control.storage.action == 0x30) { control.storage.buffer[control.storage.counter + (control.storage.lba % CPM_PAGES)*CPM_PAGE_SIZE] = value; control.storage.counter++; if (control.storage.counter >= CPM_PAGE_SIZE) { // @todo We need to figure out some way to actually prevent write fails from occuring if (BSP_SD_WriteBlocks((uint32_t*)control.storage.buffer, control.storage.lba/CPM_PAGES, SD_PAGES, SD_DATATIMEOUT) != MSD_OK) { printf("WRITE FAIL!!\n\r"); } control.storage.ready = 0; control.storage.action = 0; } } break; case 0x0b: control.storage.lba_1 = value; break; case 0x0c: control.storage.lba_2 = value; break; case 0x0d: control.storage.lba_3 = value; break; case 0x0f: if (value == 0x20 || value == 0x30) { control.storage.lba = calculate_lba(); control.storage.action = value; control.storage.counter = 0; } break; default: printf("IO Write: %.2X @ %.2X\n\r", value, address); break; } } void handle_ioreq() { if (has_wr()) { handle_io_write(); } else if (has_rd()) { handle_io_read(); } } void cycle() { // We need this not detect IO multiple times static uint8_t had_ioreq = 0; if (!has_ioreq()) { had_ioreq = 0; } // @todo We are forgetting to set this somewhere enable_data_out(0); if (has_memrq()) { handle_memrq(); } else if (has_ioreq() && !has_m1()) { had_ioreq++; if (had_ioreq == 3) { handle_ioreq(); } } else if (has_ioreq() && has_m1()) { printf("Interrupt ackknowledged\n\r"); } } void control_execute_state() { switch (control.state) { case CONTROL_STOP: // OK HAL_GPIO_WritePin(GPIOA, GPIO_PIN_7, GPIO_PIN_RESET); // UPDATE HAL_GPIO_WritePin(GPIOC, GPIO_PIN_4, GPIO_PIN_RESET); // OTHER HAL_GPIO_WritePin(GPIOC, GPIO_PIN_5, GPIO_PIN_RESET); return; case CONTROL_RESET_BEGIN: control.state++; set_reset(1); // OK HAL_GPIO_WritePin(GPIOA, GPIO_PIN_7, GPIO_PIN_SET); // UPDATE HAL_GPIO_WritePin(GPIOC, GPIO_PIN_4, GPIO_PIN_RESET); // OTHER HAL_GPIO_WritePin(GPIOC, GPIO_PIN_5, GPIO_PIN_RESET); break; case CONTROL_RESET_BEGIN+1 ... CONTROL_RESET_END-1: control.state++; set_clock(control.state % 2); break; case CONTROL_RESET_END: control.state++; set_reset(0); break; case CONTROL_CLOCK_LOW: control.state++; set_clock(1); break; case CONTROL_CLOCK_HIGH: control.state--; cycle(); set_clock(0); break; } } // @todo Properly reset everything void control_reset() { free(control.storage.buffer); Control temp = {CONTROL_RESET_BEGIN, 0, {1, 0, 0, 0, 0, 0, 0, 0, NULL}}; control = temp; control.storage.buffer = (uint8_t*)malloc(SD_PAGES*SD_PAGE_SIZE); }