controller/Src/control.c

386 lines
9.0 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string.h>
#include "control.h"
#include "io.h"
#include "bsp_driver_sd.h"
#include "profiling.h"
// The top 4 address bits determine which device is used. (16 pages, 256 devices)
// 0xFF means that the device does not exist
// WATCH OUT THE DEVICE ADDRESS NEED TO BE REVERSED (MSB IS ON THE RIGHT)
uint8_t memory_map_0[16] = {0b00010000, 0b10001000, 0b01001000, 0b11001000, 0b00101000, 0b10101000, 0b01101000, 0b11101000, 0b00011000, 0b10011000, 0b01011000, 0b11011000, 0b00111000, 0b10111000, 0b01111000, 0b11111000};
uint8_t memory_map_1[16] = {0b00001000, 0b10001000, 0b01001000, 0b11001000, 0b00101000, 0b10101000, 0b01101000, 0b11101000, 0b00011000, 0b10011000, 0b01011000, 0b11011000, 0b00111000, 0b10111000, 0b01111000, 0b11111000};
Control control;
// @todo For some reason increasing SD_PAGES does not work
#define SD_PAGES 1
#define CPM_PAGE_SIZE 128
#define SD_PAGE_SIZE 512
#define CPM_PAGES (SD_PAGE_SIZE/CPM_PAGE_SIZE*SD_PAGES)
uint8_t get_device(uint16_t address) {
uint8_t page = address >> 12;
if (control.memory_config == 0) {
return memory_map_0[page];
} else if (control.memory_config == 1) {
return memory_map_1[page];
}
return 0xFF;
}
uint32_t calculate_lba() {
uint32_t temp = (control.storage.lba_1) + (control.storage.lba_2 << 8) + (control.storage.lba_3 << 16);
if (temp/CPM_PAGES != control.storage.lba/CPM_PAGES) {
control.storage.dirty |= 1;
}
/* printf("LBA [1]: %li\n\r", control.storage.lba_1); */
/* printf("LBA [2]: %li\n\r", control.storage.lba_2); */
/* printf("LBA [3]: %li\n\r", control.storage.lba_3); */
/* printf("LBA: %li\n\r", control.storage.lba); */
return temp;
}
void program_eeprom() {
static int address_counter = 0;
static int read_counter = 0;
static int write_counter = 0;
// Check if we are done
if (address_counter == control.eeprom.length) {
// Mark as done and trigger Z80 reset
control.eeprom.programming = 0;
control.state = CONTROL_RESET_BEGIN;
// Reset counters
address_counter = 0;
read_counter = 0;
write_counter = 0;
send_busrq(0);
// Reset signals
send_memrq(0);
send_wr(0);
send_rd(0);
// Free memory used to store program
free(control.eeprom.data);
control.eeprom.data = NULL;
control.eeprom.length = 0;
// Notify the user
printf("\nEEPROM Programmed!\n\r");
// Turn of the update light
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_4, GPIO_PIN_RESET);
return;
}
// Turn on the update light
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_4, GPIO_PIN_SET);
// Check if the data is written
if (write_counter < 100) {
// Select correct device and address
select_device(memory_map_0[0]);
write_address(address_counter);
// Write the data
write_data(control.eeprom.data[address_counter]);
// Send write request
enable_data_out(1);
send_memrq(1);
send_wr(1);
write_counter++;
} else {
// Stop writing
enable_data_out(0);
send_memrq(1);
send_wr(0);
send_rd(1);
uint8_t d = read_data();
if (read_counter > 5 && d == control.eeprom.data[address_counter]) {
address_counter++;
write_counter = 0;
read_counter = 0;
send_rd(0);
printf("Progress: %i/%i\r", address_counter, control.eeprom.length);
} else if (read_counter > 4000) {
// In case we failed, try again
printf("Trying again! %x != %x (%i)\n\r", d, control.eeprom.data[address_counter], address_counter);
read_counter = 0;
write_counter = 0;
send_rd(0);
} else {
read_counter++;
}
}
}
void handle_memrq() {
uint16_t address = read_address();
uint8_t device = get_device(address);
select_device(device);
}
void handle_io_read() {
uint8_t address = read_address() & 0xFF;
switch (address) {
// Stand in for graphics hardware
/* case 0x03: */
/* write_data(0x01); */
/* break; */
// Stand in for the keyboard hardware
/* case 0x1E: */
/* write_data(control.input.c); */
/* control.input.received = 0; */
/* break; */
// Stand in for the keyboard hardware
/* case 0x1F: */
/* write_data(0x01 * control.input.received); */
/* break; */
case 0x08:
if (control.storage.ready && control.storage.action == 0x20) {
write_data(control.storage.buffer[control.storage.counter + (control.storage.lba % CPM_PAGES)*CPM_PAGE_SIZE]);
control.storage.counter++;
if (control.storage.counter >= CPM_PAGE_SIZE) {
control.storage.ready = 0;
control.storage.action = 0;
}
} else {
write_data(0x00);
}
break;
case 0x0f:
// Check if we need to read and in that case to the read
if (control.storage.action && !control.storage.ready) {
if (!control.storage.dirty || BSP_SD_ReadBlocks((uint32_t*)control.storage.buffer, control.storage.lba/CPM_PAGES, SD_PAGES, SD_DATATIMEOUT) == MSD_OK) {
// Indicate that we are ready to read/write
control.storage.ready = 1;
control.storage.dirty = 0;
} else {
// If we failed to read we will try again next time
/* printf("READ FAIL!\n\r"); */
}
}
write_data(0x08*control.storage.ready);
break;
default: {
/* uint8_t value = read_data(); */
/* #<{(| if (value == 0) { |)}># */
/* printf("IO Read: %.2X @ %.2X\n\r", value, address); */
/* #<{(| } |)}># */
return;
}
}
enable_data_out(1);
}
void handle_io_write() {
uint8_t address = read_address() & 0xFF;
uint8_t value = read_data();
switch (address) {
case 0x00:
control.memory_config = 0;
break;
case 0x01:
control.memory_config = 1;
break;
case 0x02:
printf("%c", value);
break;
case 0x08:
if (control.storage.ready && control.storage.action == 0x30) {
control.storage.buffer[control.storage.counter + (control.storage.lba % CPM_PAGES)*CPM_PAGE_SIZE] = value;
control.storage.counter++;
if (control.storage.counter >= CPM_PAGE_SIZE) {
// @todo We need to figure out some way to actually prevent write fails from occuring
if (BSP_SD_WriteBlocks((uint32_t*)control.storage.buffer, control.storage.lba/CPM_PAGES, SD_PAGES, SD_DATATIMEOUT) != MSD_OK) {
printf("WRITE FAIL!!\n\r");
}
control.storage.ready = 0;
control.storage.action = 0;
}
}
break;
case 0x0b:
control.storage.lba_1 = value;
break;
case 0x0c:
control.storage.lba_2 = value;
break;
case 0x0d:
control.storage.lba_3 = value;
break;
case 0x0f:
if (value == 0x20 || value == 0x30) {
control.storage.lba = calculate_lba();
control.storage.action = value;
control.storage.counter = 0;
}
break;
default:
printf("IO Write: %.2X @ %.2X\n\r", value, address);
break;
}
}
void handle_ioreq() {
if (has_wr()) {
handle_io_write();
} else if (has_rd()) {
handle_io_read();
}
}
void cycle() {
// Make sure data get reset as input
if (!control.eeprom.programming) {
enable_data_out(0);
}
// We need this not detect IO multiple times
static uint8_t had_ioreq = 0;
if (!has_ioreq()) {
had_ioreq = 0;
}
// @todo Enable this one we start doing things using interrupts again
/* send_int(control.interrupt.type != CONTROL_INT_NONE); */
if (control.eeprom.programming && has_busak()) {
if (control.eeprom.programming) {
program_eeprom();
}
} else if (control.eeprom.programming != has_busak()) {
send_busrq(control.eeprom.programming);
} else if (has_memrq()) {
handle_memrq();
} else if (has_ioreq() && !has_m1()) {
had_ioreq++;
if (had_ioreq == 3) {
handle_ioreq();
}
} else if (has_ioreq() && has_m1()) {
printf("Interrupt ackknowledged\n\r");
}
}
void control_execute_state() {
switch (control.state) {
case CONTROL_STOP:
// OK
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_7, GPIO_PIN_RESET);
// UPDATE
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_4, GPIO_PIN_RESET);
// OTHER
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_5, GPIO_PIN_RESET);
return;
case CONTROL_RESET_BEGIN:
control.state++;
set_reset(1);
// OK
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_7, GPIO_PIN_SET);
// UPDATE
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_4, GPIO_PIN_RESET);
// OTHER
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_5, GPIO_PIN_RESET);
break;
case CONTROL_RESET_BEGIN+1 ... CONTROL_RESET_END-1:
control.state++;
set_clock(control.state % 2);
break;
case CONTROL_RESET_END:
control.state++;
set_reset(0);
break;
case CONTROL_CLOCK_LOW:
control.state++;
set_clock(1);
break;
case CONTROL_CLOCK_HIGH:
control.state--;
cycle();
set_clock(0);
break;
}
}
// @todo Properly reset everything
void control_reset() {
free(control.storage.buffer);
Control temp = {CONTROL_RESET_BEGIN, 0, {1, 0, 0, 0, 0, 0, 0, 0, NULL}, {0,0}, {0, 0, NULL}};
control = temp;
control.storage.buffer = (uint8_t*)malloc(SD_PAGES*SD_PAGE_SIZE);
}
uint8_t control_receive_program(uint8_t byte) {
static uint16_t i = 0;
static uint16_t c = 0;
if (c <= 1) {
control.eeprom.length += byte << c*8;
c++;
} else {
if (c == 2) {
control.eeprom.data = malloc(control.eeprom.length);
c++;
}
control.eeprom.data[i] = byte;
i++;
}
if (i >= control.eeprom.length) {
i = 0;
c = 0;
control.eeprom.programming = 1;
return 1;
}
return 0;
}
void send_key(uint8_t c) {
control.input.c = c;
control.input.received = 1;
}