controller/Src/control.c

451 lines
10 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string.h>
#include <sys/types.h>
#include "control.h"
#include "io.h"
#include "bsp_driver_sd.h"
#include "profiling.h"
// The top 4 address bits determine which device is used. (16 pages, 256 devices)
// 0xFF means that the device does not exist
// WATCH OUT THE DEVICE ADDRESS NEED TO BE REVERSED (MSB IS ON THE RIGHT)
uint8_t memory_map_0[16] = {0b00010000, 0b10001000, 0b01001000, 0b11001000, 0b00101000, 0b10101000, 0b01101000, 0b11101000, 0b00011000, 0b10011000, 0b01011000, 0b11011000, 0b00111000, 0b10111000, 0b01111000, 0b11111000};
uint8_t memory_map_1[16] = {0b00001000, 0b10001000, 0b01001000, 0b11001000, 0b00101000, 0b10101000, 0b01101000, 0b11101000, 0b00011000, 0b10011000, 0b01011000, 0b11011000, 0b00111000, 0b10111000, 0b01111000, 0b11111000};
Control control;
extern UART_HandleTypeDef huart2;
extern uint8_t ack[1];
extern uint8_t nack[1];
#define CPM_RECORD_SIZE 128
#define CPM_RECORDS_PER_BLOCK 128
#define CPM_BLOCK_SIZE CPM_RECORD_SIZE*CPM_RECORDS_PER_BLOCK
uint8_t get_device(uint16_t address) {
uint8_t page = address >> 12;
if (control.memory_config == 0) {
return memory_map_0[page];
} else if (control.memory_config == 1) {
return memory_map_1[page];
}
return 0xFF;
}
void control_program_eeprom(uint8_t* data, uint16_t length) {
// Take control of the bus
send_busrq(1);
while (!has_busak()) {
control_cycle();
}
enable_address_out(1);
select_device(memory_map_0[0]);
for (uint16_t i = 0; i < length; ++i) {
write_address(i);
write_data(data[i]);
enable_data_out(1);
send_memrq(1);
send_wr(1);
send_wr(0);
enable_data_out(0);
send_rd(1);
for (;;) {
uint8_t d = read_data();
if (d == data[i]) {
break;
}
}
send_rd(0);
send_memrq(0);
uint8_t progress[] = {(i+1) & 0xFF, (i+1) >> 8};
HAL_UART_Transmit(&huart2, progress, sizeof(progress), HAL_MAX_DELAY);
}
enable_address_out(0);
// Release the bus again
send_busrq(0);
// Restart the z80
control_reset();
HAL_UART_Transmit(&huart2, ack, sizeof(ack), HAL_MAX_DELAY);
}
void handle_memrq() {
uint16_t address = read_address();
uint8_t device = get_device(address);
select_device(device);
}
void handle_io_read() {
uint8_t address = read_address() & 0xFF;
switch (address) {
// @todo This should be detected on startup
// Stand in for graphics hardware
/* case 0x03: */
/* write_data(0x01); */
/* break; */
/* Stand in for the keyboard hardware */
/* case 0x1E: */
/* write_data(char_c); */
/* char_r = 0; */
/* break; */
/* Stand in for the keyboard hardware */
/* case 0x1F: */
/* #<{(| write_data(0x01 * char_r); |)}># */
/* write_data(0x00); */
/* break; */
// Read byte from disk
case 0x08:
if (control.storage.ready && control.storage.command == 0x20) {
if (control.storage.counter < control.storage.size) {
write_data(control.storage.buffer[control.storage.counter]);
} else {
write_data(0x00);
}
control.storage.counter++;
if (control.storage.counter >= CPM_RECORD_SIZE) {
control.storage.ready = 0;
}
} else {
write_data(0x00);
}
break;
// Check if disk is ready
case 0x0f:
write_data(0x08*control.storage.ready);
break;
default: {
/* uint8_t value = read_data(); */
/* #<{(| if (value == 0) { |)}># */
/* printf("IO Read: %.2X @ %.2X\n\r", value, address); */
/* #<{(| } |)}># */
return;
}
}
enable_data_out(1);
}
void handle_io_write() {
uint8_t address = read_address() & 0xFF;
uint8_t value = read_data();
switch (address) {
case 0x00:
control.memory_config = 0;
break;
case 0x01:
control.memory_config = 1;
break;
case 0x02:
printf("%c", value);
break;
// Write byte to disk
case 0x08:
// @todo Implement this from scratch
break;
case 0x0b: {
uint32_t temp = control.storage.lba & 0xFFFF00;
control.storage.lba = temp + value;
break;
}
case 0x0c: {
uint32_t temp = control.storage.lba & 0xFF00FF;
control.storage.lba = temp + (value << 8);
break;
}
case 0x0d: {
uint32_t temp = control.storage.lba & 0x00FFFF;
control.storage.lba = temp + (value << 16);
break;
}
// Receive disk command
case 0x0f: {
control.storage.command = value;
control.storage.counter = 0;
control.storage.size = 0;
if (control.storage.command == 0x20) {
char filename[128] = {0};
uint32_t offset = 0;
if (control.storage.lba == 0) {
snprintf(filename, 128, "0:loader.bin");
offset = control.storage.lba - 0;
} else if (control.storage.lba >= 1 && control.storage.lba < 45) {
snprintf(filename, 128, "0:cpm22.bin");
offset = control.storage.lba - 1;
} else if (control.storage.lba >= 45 && control.storage.lba < 51) {
snprintf(filename, 128, "0:bios.bin");
offset = control.storage.lba - 45;
} else if (control.storage.lba >= 256 && control.storage.lba < 384) {
offset = control.storage.lba - 256;
control.storage.size = 128;
for (int i = 0; i < CPM_RECORD_SIZE; ++i) {
control.storage.buffer[i] = control.storage.directory[offset*CPM_RECORD_SIZE + i];
}
} else if (control.storage.lba >= 384) {
uint32_t block = (control.storage.lba - 256) / CPM_RECORDS_PER_BLOCK;
for (int entry = 0; entry < 127; ++entry) {
for (int i = 0; i < 8; ++i) {
uint16_t allocation = control.storage.directory[entry*32 + 16 + 2*i];
allocation += control.storage.directory[entry*32 + 17 + 2*i] << 8;
if (allocation == block) {
offset = (control.storage.lba - 256 - block*CPM_RECORDS_PER_BLOCK) + i*CPM_RECORDS_PER_BLOCK;
char name[8];
for (int j = 0; j < 8; ++j) {
char c = control.storage.directory[entry*32 + 1 + j];
if (c == ' ') {
c = 0x00;
}
name[j] = c;
}
char ext[3];
for (int j = 0; j < 3; ++j) {
char c = control.storage.directory[entry*32 + 9 + j];
if (c == ' ') {
c = 0x00;
}
ext[j] = c;
}
snprintf(filename, 128, "0:A/%.8s.%.3s", name, ext);
}
}
}
}
if (filename[0]) {
FIL file;
// @0todo Cache the currently opened file so we are not opening it every 128 bytes
FRESULT fr = f_open(&file, filename, FA_READ);
if (fr) {
printf("File error: %i\n\r", fr);
return;
}
fr = f_lseek(&file, offset * 0x80);
if (fr) {
printf("File error: %i\n\r", fr);
return;
}
fr = f_read(&file, control.storage.buffer, CPM_RECORD_SIZE, &control.storage.size);
if (fr) {
printf("File error: %i\n\r", fr);
return;
}
fr = f_close(&file);
if (fr) {
printf("File error: %i\n\r", fr);
return;
}
}
control.storage.ready = 1;
}
break;
}
default:
printf("IO Write: %.2X @ %.2X\n\r", value, address);
break;
}
}
void handle_ioreq() {
if (has_wr()) {
handle_io_write();
} else if (has_rd()) {
handle_io_read();
}
}
void control_cycle() {
set_clock(1);
// We need this not detect IO multiple times
static uint8_t had_ioreq = 0;
if (!has_ioreq()) {
had_ioreq = 0;
}
// @todo We are forgetting to set this somewhere
enable_data_out(0);
if (has_memrq()) {
handle_memrq();
} else if (has_ioreq() && !has_m1()) {
had_ioreq++;
if (had_ioreq == 3) {
handle_ioreq();
}
} else if (has_ioreq() && has_m1()) {
printf("Interrupt ackknowledged\n\r");
}
set_clock(0);
}
void get_disk_entries(char* diskpath) {
printf("Scanning: %s\n\r", diskpath);
// Clear all entries
for (int i = 0; i < 0x4000; ++i) {
if (i % 32 == 0) {
control.storage.directory[i] = 0xe5;
} else {
control.storage.directory[i] = 0x00;
}
}
DIR dir;
FILINFO fno;
FRESULT fr = f_opendir(&dir, diskpath);
if (fr == FR_OK) {
uint16_t end = 1;
uint8_t index = 0;
for (;;) {
fr = f_readdir(&dir, &fno);
if (fr != FR_OK || fno.fname[0] == 0) {
break;
}
if (!(fno.fattrib & AM_DIR)) {
printf("File: %s\n\r", fno.fname);
control.storage.directory[index*32 + 0] = 0x00;
// Calculate the number of records
uint32_t size = (fno.fsize + CPM_RECORD_SIZE - 1) / CPM_RECORD_SIZE;
control.storage.directory[index*32 + 16] = end & 0xFF;
control.storage.directory[index*32 + 17] = (end >> 8) & 0xFF;
end++;
int i = 1;
while (size >= 0x80) {
size -= 0x80;
control.storage.directory[index*32 + 16 + i*2] = end & 0xFF;
control.storage.directory[index*32 + 17 + i*2] = (end >> 8) & 0xFF;
end++;
i++;
}
control.storage.directory[index*32 + 12] = (i-1) & 0xFF;
control.storage.directory[index*32 + 13] = 0x00;
control.storage.directory[index*32 + 14] = ((i-1) >> 8) & 0xFF;
// Store the size in the number of records
control.storage.directory[index*32 + 15] = size;
/* free(entries[index].filename); */
uint8_t name_len = 9;
for (uint8_t i = 0; i < 8; ++i) {
char c = ' ';
if (name_len == 9 && fno.fname[i] != '.') {
c = fno.fname[i];
} else if (name_len == 9){
name_len = i+1;
}
control.storage.directory[index*32 + 1+i] = c;
}
uint8_t done = 0;
for (uint8_t i = 0; i < 3; ++i) {
char c = ' ';
if (!done && fno.fname[name_len+i] != 0) {
c = fno.fname[name_len+i];
} else {
done = 1;
}
control.storage.directory[index*32 + 9+i] = c;
}
index++;
}
}
} else {
printf("File error: %i\n\r", fr);
return;
}
fr = f_closedir(&dir);
if (fr) {
printf("File error: %i\n\r", fr);
return;
}
}
// @todo Properly reset everything
void control_reset() {
free(control.storage.buffer);
free(control.storage.directory);
f_close(control.storage.file);
free(control.storage.file);
f_mount(0, "0:", 0);
free(control.storage.fs);
Control temp = {0, {NULL, NULL, 0, 0, 0, 0, NULL, NULL, 0}};
control = temp;
control.storage.buffer = (uint8_t*)malloc(CPM_RECORD_SIZE);
control.storage.directory = (uint8_t*)malloc(0x4000);
control.storage.fs = (FATFS*)malloc(sizeof(FATFS));
control.storage.file = (FIL*)malloc(sizeof(FIL));
printf("Status: %i\n\r", disk_status(0));
FRESULT fr = f_mount(control.storage.fs, "0:", 0);
if (fr) {
printf("File error: %i\n\r", fr);
}
get_disk_entries("0:A");
set_reset(1);
for (int i = 0; i <= 10; ++i) {
set_clock(i % 2);
}
set_reset(0);
}