Ported from ATMega328P to STM32F103C8

This commit is contained in:
2021-02-05 00:38:22 +01:00
commit 9fe45800ef
919 changed files with 575866 additions and 0 deletions

44
Core/Src/fifo.c Normal file
View File

@@ -0,0 +1,44 @@
#include "fifo.h"
void FIFO_push(volatile struct FIFO* fifo, uint8_t value) {
if (fifo->size == FIFO_SIZE) {
return;
}
fifo->size++;
if (fifo->size > 1) {
fifo->tail++;
fifo->tail %= FIFO_SIZE;
}
fifo->buffer[fifo->tail] = value;
}
uint8_t FIFO_pop(volatile struct FIFO* fifo) {
if (fifo->size == 0) {
return 0;
}
fifo->size--;
uint8_t data = fifo->buffer[fifo->head];
if (fifo->size >= 1) {
fifo->head++;
fifo->head %= FIFO_SIZE;
}
return data;
}
int FIFO_size(volatile struct FIFO* fifo) {
return fifo->size;
}
void FIFO_clear(volatile struct FIFO* fifo) {
fifo->head = 0;
fifo->tail = 0;
fifo->size = 0;
// We don't need to clear the buffer as we will override it anyway
}

252
Core/Src/keyboard.c Normal file
View File

@@ -0,0 +1,252 @@
#include <stdint.h>
#include <stdio.h>
#include "keyboard.h"
#include "scancode.h"
#include "fifo.h"
#include "coroutine.h"
#include "main.h"
volatile struct {
struct FIFO buffer;
uint8_t sending : 1;
uint8_t cmd;
struct {
uint8_t shift : 1;
uint8_t caps_lock : 1;
uint8_t ctrl : 1;
} modifier;
uint8_t released : 1;
} keyboard = {0};
// Send a command to the keyboard (THIS BLOCKS)
void send_keyboard_cmd(uint8_t value) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
// Pull clock low
GPIO_InitStruct.Pin = KEYBOARD_CLK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(KEYBOARD_CLK_GPIO_Port, &GPIO_InitStruct);
HAL_Delay(1);
// Pull data low
GPIO_InitStruct.Pin = KEYBOARD_DATA_Pin;
HAL_GPIO_Init(KEYBOARD_DATA_GPIO_Port, &GPIO_InitStruct);
// Release clock
GPIO_InitStruct.Pin = KEYBOARD_CLK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(KEYBOARD_CLK_GPIO_Port, &GPIO_InitStruct);
keyboard.sending = 1;
keyboard.cmd = value;
while (keyboard.sending) {};
}
// Add keyboard command to the queue
void queue_keyboard_cmd(uint8_t value) {
FIFO_push(&keyboard.buffer, value);
}
// Send queued command
void send_keyboard_cmd_queue() {
while (FIFO_size(&keyboard.buffer)) {
send_keyboard_cmd(FIFO_pop(&keyboard.buffer));
}
}
// Calculate parity
uint8_t parity(uint8_t value) {
value ^= value >> 4;
value ^= value >> 2;
value ^= value >> 1;
return (~value) & 1;
}
void process_scancode(uint8_t value, void (*callback)(uint8_t)) {
switch (value) {
// Left and right shift
case 18:
case 89:
keyboard.modifier.shift = !keyboard.released;
keyboard.released = 0;
break;
// Caps lock
case 0x58:
if (!keyboard.released) {
keyboard.modifier.caps_lock = !keyboard.modifier.caps_lock;
queue_keyboard_cmd(0xED);
queue_keyboard_cmd(keyboard.modifier.caps_lock << 2);
}
keyboard.released = 0;
break;
// Left ctrl
case 0x14:
keyboard.modifier.ctrl = !keyboard.released;
keyboard.released = 0;
break;
case 240:
keyboard.released = 1;
break;
default:
if (!keyboard.released) {
char c = convert_scancode(keyboard.modifier.shift, value & 127);
if (keyboard.modifier.caps_lock && !keyboard.modifier.shift && c >= 'a' && c <= 'z') {
c -= 0x20;
}
if (keyboard.modifier.ctrl) {
switch (c) {
case 'c':
c = 0x03;
break;
case 'e':
c = 0x05;
break;
case 'p':
c = 0x10;
break;
case 'r':
c = 0x12;
break;
case 's':
c = 0x13;
break;
case 'u':
c = 0x15;
break;
case 'x':
c = 0x18;
break;
case 'z':
c = 0x1A;
break;
default:
c = 0x00;
break;
}
}
if (c) {
callback(c);
}
}
keyboard.released = 0;
break;
}
}
void receive_scancode_bit(void (*callback)(uint8_t)) {
uint8_t in = HAL_GPIO_ReadPin(KEYBOARD_DATA_GPIO_Port, KEYBOARD_DATA_Pin) == GPIO_PIN_SET;
CO_BEGIN;
// Check that the first bit is 0
if (in != 0) {
CO_BREAK;
}
CO_YIELD;
static uint8_t value;
value = 0;
static int i = 0;
for (i = 0; i < 8; ++i) {
value |= in << i;
CO_YIELD;
}
// Check the parity
if (in != parity(value)) {
CO_BREAK;
}
CO_YIELD;
// Check that the last bit is 1
if (in != 1) {
CO_BREAK;
}
process_scancode(value, callback);
CO_END;
}
void send_cmd_bit() {
CO_BEGIN;
static int i;
for (i = 0; i < 8; ++i) {
// Send bit
if ((keyboard.cmd >> i) & 1) {
HAL_GPIO_WritePin(KEYBOARD_DATA_GPIO_Port, KEYBOARD_DATA_Pin, GPIO_PIN_SET);
} else {
HAL_GPIO_WritePin(KEYBOARD_DATA_GPIO_Port, KEYBOARD_DATA_Pin, GPIO_PIN_RESET);
}
CO_YIELD;
}
// Send parity
if (parity(keyboard.cmd)) {
HAL_GPIO_WritePin(KEYBOARD_DATA_GPIO_Port, KEYBOARD_DATA_Pin, GPIO_PIN_SET);
} else {
HAL_GPIO_WritePin(KEYBOARD_DATA_GPIO_Port, KEYBOARD_DATA_Pin, GPIO_PIN_RESET);
}
CO_YIELD;
// Release data line
GPIO_InitTypeDef GPIO_InitStruct = {0};
HAL_GPIO_DeInit(KEYBOARD_DATA_GPIO_Port, KEYBOARD_DATA_Pin);
GPIO_InitStruct.Pin = KEYBOARD_DATA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(KEYBOARD_DATA_GPIO_Port, &GPIO_InitStruct);
CO_YIELD;
// Wait for data to go low as ack
while (HAL_GPIO_ReadPin(KEYBOARD_DATA_GPIO_Port, KEYBOARD_DATA_Pin) == GPIO_PIN_SET) {
CO_YIELD;
}
keyboard.sending = 0;
CO_END;
}
void keyboard_interrupt(void (*callback)(uint8_t)) {
uint8_t clk_state = HAL_GPIO_ReadPin(KEYBOARD_CLK_GPIO_Port, KEYBOARD_CLK_Pin) == GPIO_PIN_SET;
if (!keyboard.sending && clk_state) {
receive_scancode_bit(callback);
}
if (keyboard.sending && !clk_state) {
send_cmd_bit();
}
}

482
Core/Src/main.c Normal file
View File

@@ -0,0 +1,482 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <errno.h>
#include <stdint.h>
#include <sys/stat.h>
#include <stdio.h>
#include "scancode.h"
#include "keyboard.h"
#include "fifo.h"
#include <stdint.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define CLK 4
#define DATA 5
#define RDY 6
#define WAIT 7
#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart1;
/* USER CODE BEGIN PV */
volatile struct FIFO buffer;
uint8_t i2c_data;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
// Clock the value to 74164
void write_value(uint8_t value) {
HAL_SPI_Transmit(&hspi1, &value, 1, HAL_MAX_DELAY);
// Indicate that a byte is waiting
RDY_GPIO_Port->BSRR = (uint32_t)RDY_Pin << 16u;
RDY_GPIO_Port->BSRR = RDY_Pin;
}
void add_to_queue(uint8_t c) {
FIFO_push(&buffer, c);
}
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) {
if (GPIO_Pin == KEYBOARD_CLK_Pin) {
keyboard_interrupt(add_to_queue);
}
}
// @todo How to install I2C Receive interrupt
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) {
if (hi2c->Instance == I2C1) {
if (i2c_data == 0xFF) {
// Reset to bootloader
// @todo Make sure we set the conditions to actually go to the bootloader
// Not that important for now as we are not going to use the bootloader for now
HAL_NVIC_SystemReset();
while (1);
}
FIFO_push(&buffer, i2c_data);
HAL_I2C_Slave_Receive_IT(&hi2c1, &i2c_data, 1);
}
}
int _isatty(int fd) {
if (fd >= STDIN_FILENO && fd <= STDERR_FILENO) {
return 1;
}
errno = EBADF;
return 0;
}
int _write(int fd, char* ptr, int len) {
HAL_StatusTypeDef hstatus;
if (fd >= STDIN_FILENO && fd <= STDERR_FILENO) {
hstatus = HAL_UART_Transmit(&huart1, (uint8_t*)ptr, len, HAL_MAX_DELAY);
if (hstatus == HAL_OK) {
return len;
} else {
return EIO;
}
}
errno = EBADF;
return -1;
}
int _close(int fd) {
if (fd >= STDIN_FILENO && fd <= STDERR_FILENO) {
return 0;
}
errno = EBADF;
return -1;
}
int _lseek(int fd, int ptr, int dir) {
(void) fd;
(void) ptr;
(void) dir;
errno = EBADF;
return -1;
}
int _read(int fd, char* ptr, int len) {
HAL_StatusTypeDef hstatus;
if (fd == STDIN_FILENO) {
hstatus = HAL_UART_Receive(&huart1, (uint8_t*)ptr, 1, HAL_MAX_DELAY);
if (hstatus == HAL_OK) {
return 1;
} else {
return EIO;
}
}
errno = EBADF;
return -1;
}
int _fstat(int fd, struct stat* st) {
if (fd >= STDIN_FILENO && fd <= STDERR_FILENO) {
st->st_mode = S_IFCHR;
return 0;
}
errno = EBADF;
return 0;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_USART1_UART_Init();
MX_SPI1_Init();
/* USER CODE BEGIN 2 */
setvbuf(stdout, NULL, _IONBF, 0);
printf("Starting keyboard\n\r");
FIFO_clear(&buffer);
// Reset keyboard
send_keyboard_cmd(0xFF);
// Wait for response from keyboard
while(!FIFO_size(&buffer));
while(FIFO_size(&buffer)) {
printf("0x%X\n\r", FIFO_pop(&buffer));
};
// Set the keyboard repeat rate (and delay)
send_keyboard_cmd(0xF3);
send_keyboard_cmd(0x00 | (0<<5) | (0<<4));
// Start receiving I2C
HAL_I2C_Slave_Receive_IT(&hi2c1, &i2c_data, 1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
send_keyboard_cmd_queue();
/* */
if (FIFO_size(&buffer) && HAL_GPIO_ReadPin(WAIT_GPIO_Port, WAIT_Pin) == GPIO_PIN_RESET) {
write_value(FIFO_pop(&buffer));
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 82;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(RDY_GPIO_Port, RDY_Pin, GPIO_PIN_SET);
/*Configure GPIO pin : WAIT_Pin */
GPIO_InitStruct.Pin = WAIT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(WAIT_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : RDY_Pin */
GPIO_InitStruct.Pin = RDY_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(RDY_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : KEYBOARD_CLK_Pin */
GPIO_InitStruct.Pin = KEYBOARD_CLK_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(KEYBOARD_CLK_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : KEYBOARD_DATA_Pin */
GPIO_InitStruct.Pin = KEYBOARD_DATA_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(KEYBOARD_DATA_GPIO_Port, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

10
Core/Src/scancode.c Normal file
View File

@@ -0,0 +1,10 @@
#include "scancode.h"
char scancode[2][128] = {
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x09,0x60,0x00,0x00,0x00,0x00,0x00,0x00,0x71,0x31,0x00,0x00,0x00,0x7a,0x73,0x61,0x77,0x32,0x00,0x00,0x63,0x78,0x64,0x65,0x34,0x33,0x00,0x00,0x20,0x76,0x66,0x74,0x72,0x35,0x00,0x00,0x6e,0x62,0x68,0x67,0x79,0x36,0x00,0x00,0x00,0x6d,0x6a,0x75,0x37,0x38,0x00,0x00,0x2c,0x6b,0x69,0x6f,0x30,0x39,0x00,0x00,0x2e,0x2f,0x6c,0x3b,0x70,0x2d,0x00,0x00,0x00,0x27,0x00,0x5b,0x3d,0x00,0x00,0x00,0x00,0x0d,0x5d,0x00,0x5c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x31,0x00,0x32,0x37,0x00,0x00,0x00,0x30,0x2e,0x32,0x35,0x36,0x38,0x1b,0x00,0x00,0x2b,0x33,0x2d,0x2a,0x39,0x00,0x00,},
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x09,0x7e,0x00,0x00,0x00,0x00,0x00,0x00,0x51,0x21,0x00,0x00,0x00,0x5a,0x53,0x41,0x57,0x40,0x00,0x00,0x43,0x58,0x44,0x45,0x24,0x23,0x00,0x00,0x20,0x56,0x46,0x54,0x52,0x25,0x00,0x00,0x4e,0x42,0x48,0x47,0x59,0x5e,0x00,0x00,0x00,0x4d,0x4a,0x55,0x26,0x2a,0x00,0x00,0x3c,0x4b,0x49,0x4f,0x29,0x28,0x00,0x00,0x3e,0x3f,0x4c,0x3a,0x50,0x5f,0x00,0x00,0x00,0x22,0x00,0x7b,0x2b,0x00,0x00,0x00,0x00,0x0d,0x7d,0x00,0x7c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x00,0x31,0x00,0x32,0x37,0x00,0x00,0x00,0x30,0x2e,0x32,0x35,0x36,0x38,0x1b,0x00,0x00,0x2b,0x33,0x2d,0x2a,0x39,0x00,0x00,},
};
uint8_t convert_scancode(uint8_t shift, uint8_t code) {
return scancode[shift][code];
}

View File

@@ -0,0 +1,294 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32f1xx_hal_msp.c
* @brief This file provides code for the MSP Initialization
* and de-Initialization codes.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN Define */
/* USER CODE END Define */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN Macro */
/* USER CODE END Macro */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* External functions --------------------------------------------------------*/
/* USER CODE BEGIN ExternalFunctions */
/* USER CODE END ExternalFunctions */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* Initializes the Global MSP.
*/
void HAL_MspInit(void)
{
/* USER CODE BEGIN MspInit 0 */
/* USER CODE END MspInit 0 */
__HAL_RCC_AFIO_CLK_ENABLE();
__HAL_RCC_PWR_CLK_ENABLE();
/* System interrupt init*/
/** NOJTAG: JTAG-DP Disabled and SW-DP Enabled
*/
__HAL_AFIO_REMAP_SWJ_NOJTAG();
/* USER CODE BEGIN MspInit 1 */
/* USER CODE END MspInit 1 */
}
/**
* @brief I2C MSP Initialization
* This function configures the hardware resources used in this example
* @param hi2c: I2C handle pointer
* @retval None
*/
void HAL_I2C_MspInit(I2C_HandleTypeDef* hi2c)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(hi2c->Instance==I2C1)
{
/* USER CODE BEGIN I2C1_MspInit 0 */
/* USER CODE END I2C1_MspInit 0 */
__HAL_RCC_GPIOB_CLK_ENABLE();
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* Peripheral clock enable */
__HAL_RCC_I2C1_CLK_ENABLE();
/* I2C1 interrupt Init */
HAL_NVIC_SetPriority(I2C1_EV_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(I2C1_EV_IRQn);
/* USER CODE BEGIN I2C1_MspInit 1 */
/* USER CODE END I2C1_MspInit 1 */
}
}
/**
* @brief I2C MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hi2c: I2C handle pointer
* @retval None
*/
void HAL_I2C_MspDeInit(I2C_HandleTypeDef* hi2c)
{
if(hi2c->Instance==I2C1)
{
/* USER CODE BEGIN I2C1_MspDeInit 0 */
/* USER CODE END I2C1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_I2C1_CLK_DISABLE();
/**I2C1 GPIO Configuration
PB6 ------> I2C1_SCL
PB7 ------> I2C1_SDA
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_6);
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_7);
/* I2C1 interrupt DeInit */
HAL_NVIC_DisableIRQ(I2C1_EV_IRQn);
/* USER CODE BEGIN I2C1_MspDeInit 1 */
/* USER CODE END I2C1_MspDeInit 1 */
}
}
/**
* @brief SPI MSP Initialization
* This function configures the hardware resources used in this example
* @param hspi: SPI handle pointer
* @retval None
*/
void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(hspi->Instance==SPI1)
{
/* USER CODE BEGIN SPI1_MspInit 0 */
/* USER CODE END SPI1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_SPI1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA7 ------> SPI1_MOSI
*/
GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USER CODE BEGIN SPI1_MspInit 1 */
/* USER CODE END SPI1_MspInit 1 */
}
}
/**
* @brief SPI MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param hspi: SPI handle pointer
* @retval None
*/
void HAL_SPI_MspDeInit(SPI_HandleTypeDef* hspi)
{
if(hspi->Instance==SPI1)
{
/* USER CODE BEGIN SPI1_MspDeInit 0 */
/* USER CODE END SPI1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_SPI1_CLK_DISABLE();
/**SPI1 GPIO Configuration
PA5 ------> SPI1_SCK
PA7 ------> SPI1_MOSI
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5|GPIO_PIN_7);
/* USER CODE BEGIN SPI1_MspDeInit 1 */
/* USER CODE END SPI1_MspDeInit 1 */
}
}
/**
* @brief UART MSP Initialization
* This function configures the hardware resources used in this example
* @param huart: UART handle pointer
* @retval None
*/
void HAL_UART_MspInit(UART_HandleTypeDef* huart)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(huart->Instance==USART1)
{
/* USER CODE BEGIN USART1_MspInit 0 */
/* USER CODE END USART1_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_USART1_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**USART1 GPIO Configuration
PA9 ------> USART1_TX
PA10 ------> USART1_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USART1 interrupt Init */
HAL_NVIC_SetPriority(USART1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART1_IRQn);
/* USER CODE BEGIN USART1_MspInit 1 */
/* USER CODE END USART1_MspInit 1 */
}
}
/**
* @brief UART MSP De-Initialization
* This function freeze the hardware resources used in this example
* @param huart: UART handle pointer
* @retval None
*/
void HAL_UART_MspDeInit(UART_HandleTypeDef* huart)
{
if(huart->Instance==USART1)
{
/* USER CODE BEGIN USART1_MspDeInit 0 */
/* USER CODE END USART1_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART1_CLK_DISABLE();
/**USART1 GPIO Configuration
PA9 ------> USART1_TX
PA10 ------> USART1_RX
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_9|GPIO_PIN_10);
/* USART1 interrupt DeInit */
HAL_NVIC_DisableIRQ(USART1_IRQn);
/* USER CODE BEGIN USART1_MspDeInit 1 */
/* USER CODE END USART1_MspDeInit 1 */
}
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

248
Core/Src/stm32f1xx_it.c Normal file
View File

@@ -0,0 +1,248 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32f1xx_it.c
* @brief Interrupt Service Routines.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f1xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
extern I2C_HandleTypeDef hi2c1;
extern UART_HandleTypeDef huart1;
/* USER CODE BEGIN EV */
/* USER CODE END EV */
/******************************************************************************/
/* Cortex-M3 Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles Non maskable interrupt.
*/
void NMI_Handler(void)
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */
/* USER CODE END NonMaskableInt_IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
while (1)
{
}
/* USER CODE END NonMaskableInt_IRQn 1 */
}
/**
* @brief This function handles Hard fault interrupt.
*/
void HardFault_Handler(void)
{
/* USER CODE BEGIN HardFault_IRQn 0 */
/* USER CODE END HardFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_HardFault_IRQn 0 */
/* USER CODE END W1_HardFault_IRQn 0 */
}
}
/**
* @brief This function handles Memory management fault.
*/
void MemManage_Handler(void)
{
/* USER CODE BEGIN MemoryManagement_IRQn 0 */
/* USER CODE END MemoryManagement_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
/* USER CODE END W1_MemoryManagement_IRQn 0 */
}
}
/**
* @brief This function handles Prefetch fault, memory access fault.
*/
void BusFault_Handler(void)
{
/* USER CODE BEGIN BusFault_IRQn 0 */
/* USER CODE END BusFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_BusFault_IRQn 0 */
/* USER CODE END W1_BusFault_IRQn 0 */
}
}
/**
* @brief This function handles Undefined instruction or illegal state.
*/
void UsageFault_Handler(void)
{
/* USER CODE BEGIN UsageFault_IRQn 0 */
/* USER CODE END UsageFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_UsageFault_IRQn 0 */
/* USER CODE END W1_UsageFault_IRQn 0 */
}
}
/**
* @brief This function handles System service call via SWI instruction.
*/
void SVC_Handler(void)
{
/* USER CODE BEGIN SVCall_IRQn 0 */
/* USER CODE END SVCall_IRQn 0 */
/* USER CODE BEGIN SVCall_IRQn 1 */
/* USER CODE END SVCall_IRQn 1 */
}
/**
* @brief This function handles Debug monitor.
*/
void DebugMon_Handler(void)
{
/* USER CODE BEGIN DebugMonitor_IRQn 0 */
/* USER CODE END DebugMonitor_IRQn 0 */
/* USER CODE BEGIN DebugMonitor_IRQn 1 */
/* USER CODE END DebugMonitor_IRQn 1 */
}
/**
* @brief This function handles Pendable request for system service.
*/
void PendSV_Handler(void)
{
/* USER CODE BEGIN PendSV_IRQn 0 */
/* USER CODE END PendSV_IRQn 0 */
/* USER CODE BEGIN PendSV_IRQn 1 */
/* USER CODE END PendSV_IRQn 1 */
}
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler(void)
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
/******************************************************************************/
/* STM32F1xx Peripheral Interrupt Handlers */
/* Add here the Interrupt Handlers for the used peripherals. */
/* For the available peripheral interrupt handler names, */
/* please refer to the startup file (startup_stm32f1xx.s). */
/******************************************************************************/
/**
* @brief This function handles I2C1 event interrupt.
*/
void I2C1_EV_IRQHandler(void)
{
/* USER CODE BEGIN I2C1_EV_IRQn 0 */
/* USER CODE END I2C1_EV_IRQn 0 */
HAL_I2C_EV_IRQHandler(&hi2c1);
/* USER CODE BEGIN I2C1_EV_IRQn 1 */
/* USER CODE END I2C1_EV_IRQn 1 */
}
/**
* @brief This function handles USART1 global interrupt.
*/
void USART1_IRQHandler(void)
{
/* USER CODE BEGIN USART1_IRQn 0 */
/* USER CODE END USART1_IRQn 0 */
HAL_UART_IRQHandler(&huart1);
/* USER CODE BEGIN USART1_IRQn 1 */
/* USER CODE END USART1_IRQn 1 */
}
/**
* @brief This function handles EXTI line[15:10] interrupts.
*/
void EXTI15_10_IRQHandler(void)
{
/* USER CODE BEGIN EXTI15_10_IRQn 0 */
/* USER CODE END EXTI15_10_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_13);
/* USER CODE BEGIN EXTI15_10_IRQn 1 */
/* USER CODE END EXTI15_10_IRQn 1 */
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

408
Core/Src/system_stm32f1xx.c Normal file
View File

@@ -0,0 +1,408 @@
/**
******************************************************************************
* @file system_stm32f1xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File.
*
* 1. This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): Setups the system clock (System clock source, PLL Multiplier
* factors, AHB/APBx prescalers and Flash settings).
* This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32f1xx_xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
* 2. After each device reset the HSI (8 MHz) is used as system clock source.
* Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to
* configure the system clock before to branch to main program.
*
* 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on
* the product used), refer to "HSE_VALUE".
* When HSE is used as system clock source, directly or through PLL, and you
* are using different crystal you have to adapt the HSE value to your own
* configuration.
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup stm32f1xx_system
* @{
*/
/** @addtogroup STM32F1xx_System_Private_Includes
* @{
*/
#include "stm32f1xx.h"
/**
* @}
*/
/** @addtogroup STM32F1xx_System_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F1xx_System_Private_Defines
* @{
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE 8000000U /*!< Default value of the External oscillator in Hz.
This value can be provided and adapted by the user application. */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE 8000000U /*!< Default value of the Internal oscillator in Hz.
This value can be provided and adapted by the user application. */
#endif /* HSI_VALUE */
/*!< Uncomment the following line if you need to use external SRAM */
#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
/* #define DATA_IN_ExtSRAM */
#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
/* Note: Following vector table addresses must be defined in line with linker
configuration. */
/*!< Uncomment the following line if you need to relocate the vector table
anywhere in Flash or Sram, else the vector table is kept at the automatic
remap of boot address selected */
/* #define USER_VECT_TAB_ADDRESS */
#if defined(USER_VECT_TAB_ADDRESS)
/*!< Uncomment the following line if you need to relocate your vector Table
in Sram else user remap will be done in Flash. */
/* #define VECT_TAB_SRAM */
#if defined(VECT_TAB_SRAM)
#define VECT_TAB_BASE_ADDRESS SRAM_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#else
#define VECT_TAB_BASE_ADDRESS FLASH_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#endif /* VECT_TAB_SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32F1xx_System_Private_Macros
* @{
*/
/**
* @}
*/
/** @addtogroup STM32F1xx_System_Private_Variables
* @{
*/
/* This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = 16000000;
const uint8_t AHBPrescTable[16U] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
const uint8_t APBPrescTable[8U] = {0, 0, 0, 0, 1, 2, 3, 4};
/**
* @}
*/
/** @addtogroup STM32F1xx_System_Private_FunctionPrototypes
* @{
*/
#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
#ifdef DATA_IN_ExtSRAM
static void SystemInit_ExtMemCtl(void);
#endif /* DATA_IN_ExtSRAM */
#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
/**
* @}
*/
/** @addtogroup STM32F1xx_System_Private_Functions
* @{
*/
/**
* @brief Setup the microcontroller system
* Initialize the Embedded Flash Interface, the PLL and update the
* SystemCoreClock variable.
* @note This function should be used only after reset.
* @param None
* @retval None
*/
void SystemInit (void)
{
#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
#ifdef DATA_IN_ExtSRAM
SystemInit_ExtMemCtl();
#endif /* DATA_IN_ExtSRAM */
#endif
/* Configure the Vector Table location -------------------------------------*/
#if defined(USER_VECT_TAB_ADDRESS)
SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */
#endif /* USER_VECT_TAB_ADDRESS */
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
* or HSI_VALUE(*) multiplied by the PLL factors.
*
* (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value
* 8 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value
* 8 MHz or 25 MHz, depending on the product used), user has to ensure
* that HSE_VALUE is same as the real frequency of the crystal used.
* Otherwise, this function may have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
* @param None
* @retval None
*/
void SystemCoreClockUpdate (void)
{
uint32_t tmp = 0U, pllmull = 0U, pllsource = 0U;
#if defined(STM32F105xC) || defined(STM32F107xC)
uint32_t prediv1source = 0U, prediv1factor = 0U, prediv2factor = 0U, pll2mull = 0U;
#endif /* STM32F105xC */
#if defined(STM32F100xB) || defined(STM32F100xE)
uint32_t prediv1factor = 0U;
#endif /* STM32F100xB or STM32F100xE */
/* Get SYSCLK source -------------------------------------------------------*/
tmp = RCC->CFGR & RCC_CFGR_SWS;
switch (tmp)
{
case 0x00U: /* HSI used as system clock */
SystemCoreClock = HSI_VALUE;
break;
case 0x04U: /* HSE used as system clock */
SystemCoreClock = HSE_VALUE;
break;
case 0x08U: /* PLL used as system clock */
/* Get PLL clock source and multiplication factor ----------------------*/
pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
#if !defined(STM32F105xC) && !defined(STM32F107xC)
pllmull = ( pllmull >> 18U) + 2U;
if (pllsource == 0x00U)
{
/* HSI oscillator clock divided by 2 selected as PLL clock entry */
SystemCoreClock = (HSI_VALUE >> 1U) * pllmull;
}
else
{
#if defined(STM32F100xB) || defined(STM32F100xE)
prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U;
/* HSE oscillator clock selected as PREDIV1 clock entry */
SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
#else
/* HSE selected as PLL clock entry */
if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET)
{/* HSE oscillator clock divided by 2 */
SystemCoreClock = (HSE_VALUE >> 1U) * pllmull;
}
else
{
SystemCoreClock = HSE_VALUE * pllmull;
}
#endif
}
#else
pllmull = pllmull >> 18U;
if (pllmull != 0x0DU)
{
pllmull += 2U;
}
else
{ /* PLL multiplication factor = PLL input clock * 6.5 */
pllmull = 13U / 2U;
}
if (pllsource == 0x00U)
{
/* HSI oscillator clock divided by 2 selected as PLL clock entry */
SystemCoreClock = (HSI_VALUE >> 1U) * pllmull;
}
else
{/* PREDIV1 selected as PLL clock entry */
/* Get PREDIV1 clock source and division factor */
prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC;
prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1U;
if (prediv1source == 0U)
{
/* HSE oscillator clock selected as PREDIV1 clock entry */
SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull;
}
else
{/* PLL2 clock selected as PREDIV1 clock entry */
/* Get PREDIV2 division factor and PLL2 multiplication factor */
prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4U) + 1U;
pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8U) + 2U;
SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull;
}
}
#endif /* STM32F105xC */
break;
default:
SystemCoreClock = HSI_VALUE;
break;
}
/* Compute HCLK clock frequency ----------------*/
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)];
/* HCLK clock frequency */
SystemCoreClock >>= tmp;
}
#if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG)
/**
* @brief Setup the external memory controller. Called in startup_stm32f1xx.s
* before jump to __main
* @param None
* @retval None
*/
#ifdef DATA_IN_ExtSRAM
/**
* @brief Setup the external memory controller.
* Called in startup_stm32f1xx_xx.s/.c before jump to main.
* This function configures the external SRAM mounted on STM3210E-EVAL
* board (STM32 High density devices). This SRAM will be used as program
* data memory (including heap and stack).
* @param None
* @retval None
*/
void SystemInit_ExtMemCtl(void)
{
__IO uint32_t tmpreg;
/*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is
required, then adjust the Register Addresses */
/* Enable FSMC clock */
RCC->AHBENR = 0x00000114U;
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN);
/* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */
RCC->APB2ENR = 0x000001E0U;
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN);
(void)(tmpreg);
/* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/
/*---------------- SRAM Address lines configuration -------------------------*/
/*---------------- NOE and NWE configuration --------------------------------*/
/*---------------- NE3 configuration ----------------------------------------*/
/*---------------- NBL0, NBL1 configuration ---------------------------------*/
GPIOD->CRL = 0x44BB44BBU;
GPIOD->CRH = 0xBBBBBBBBU;
GPIOE->CRL = 0xB44444BBU;
GPIOE->CRH = 0xBBBBBBBBU;
GPIOF->CRL = 0x44BBBBBBU;
GPIOF->CRH = 0xBBBB4444U;
GPIOG->CRL = 0x44BBBBBBU;
GPIOG->CRH = 0x444B4B44U;
/*---------------- FSMC Configuration ---------------------------------------*/
/*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/
FSMC_Bank1->BTCR[4U] = 0x00001091U;
FSMC_Bank1->BTCR[5U] = 0x00110212U;
}
#endif /* DATA_IN_ExtSRAM */
#endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/