Refactor and small optimization

This commit is contained in:
Dreaded_X 2022-06-15 20:53:01 +02:00
parent 06a90d4b04
commit ab1a78155d
Signed by: Dreaded_X
GPG Key ID: 76BDEC4E165D8AD9
4 changed files with 119 additions and 241 deletions

View File

@ -1,13 +1,21 @@
#pragma once
#include <cstdint>
#include <stdint.h>
#include <cassert>
#define RADIO_ID 0x165
#define VOLUME_ID 0x1A5
#define BUTTONS_ID 0x21f
namespace can {
template <typename T>
static T convert(uint8_t* buf, uint8_t len) {
// @TODO Handle errors in a more elegant manner
assert(len != sizeof(T));
return *(T*)buf;
}
enum Source : uint8_t {
Bluetooth = 0b111,
USB = 0b110,

View File

@ -10,7 +10,7 @@ class MultiPurposeButton {
public:
MultiPurposeButton(void(*short_press)(), void(*long_press)(), uint16_t threshold = 500);
void tick(bool current);
void update(bool current);
private:
void(* const short_press)();

View File

@ -85,11 +85,14 @@
#define MCP_TX2IF 0x10
#define MCP_WAKIF 0x40
static void send_cmd(spi_device_handle_t spi, const uint8_t cmd) {
static void send_cmd(spi_device_handle_t spi, const uint8_t cmd, bool keep_active = false) {
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length = 8;
t.tx_buffer = &cmd;
if (keep_active) {
t.flags = SPI_TRANS_CS_KEEP_ACTIVE;
}
esp_err_t ret = spi_device_polling_transmit(spi, &t);
ESP_ERROR_CHECK(ret);
@ -140,37 +143,6 @@ static void set_register(spi_device_handle_t spi, const uint8_t address, const u
ESP_ERROR_CHECK(ret);
}
static void set_registers(spi_device_handle_t spi, const uint8_t address, const uint8_t* buf, int len) {
// Acquire the bus in order to use SPI_TRANS_CS_KEEP_ACTIVE
esp_err_t ret = spi_device_acquire_bus(spi, portMAX_DELAY);
ESP_ERROR_CHECK(ret);
// Send the initial command
{
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length = 8*2;
uint8_t cmd[] = { MCP_WRITE, address };
t.tx_buffer = cmd;
t.flags = SPI_TRANS_CS_KEEP_ACTIVE;
ret = spi_device_polling_transmit(spi, &t);
ESP_ERROR_CHECK(ret);
}
// Send the data
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length = 8*len;
t.tx_buffer = buf;
ret = spi_device_polling_transmit(spi, &t);
ESP_ERROR_CHECK(ret);
spi_device_release_bus(spi);
ESP_ERROR_CHECK(ret);
}
static void modify_register(spi_device_handle_t spi, const uint8_t address, const uint8_t mask, const uint8_t data) {
spi_transaction_t t;
memset(&t, 0, sizeof(t));
@ -198,13 +170,9 @@ static bool request_new_mode(spi_device_handle_t spi, const uint8_t new_mode) {
}
static uint8_t get_mode(spi_device_handle_t spi) {
return read_register(spi, MCP_CANSTAT) & MODE_MASK;
}
static void set_CANCTRL_mode(spi_device_handle_t spi, uint8_t new_mode) {
ESP_LOGI(CAN_TAG, "set_CANCTRL_mode");
if (get_mode(spi) == MODE_SLEEP && new_mode != MODE_SLEEP) {
if ((read_register(spi, MCP_CANSTAT) & MODE_MASK) == MODE_SLEEP && new_mode != MODE_SLEEP) {
ESP_LOGI(CAN_TAG, "if");
uint8_t wake_int_enabled = (read_register(spi, MCP_CANINTE) & MCP_WAKIF);
if (!wake_int_enabled) {
@ -257,18 +225,7 @@ static uint8_t read_status(spi_device_handle_t spi) {
esp_err_t ret = spi_device_acquire_bus(spi, portMAX_DELAY);
ESP_ERROR_CHECK(ret);
// Send the command
{
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length = 8;
uint8_t cmd[] = { MCP_READ_STATUS };
t.tx_buffer = cmd;
t.flags = SPI_TRANS_CS_KEEP_ACTIVE;
ret = spi_device_polling_transmit(spi, &t);
ESP_ERROR_CHECK(ret);
}
send_cmd(spi, MCP_READ_STATUS, true);
// Read the data
spi_transaction_t t;
@ -285,14 +242,78 @@ static uint8_t read_status(spi_device_handle_t spi) {
return t.rx_data[0];
}
static bool available(spi_device_handle_t spi) {
uint8_t res = read_status(spi);
static void read_can_msg(spi_device_handle_t spi, uint8_t buffer_load_addr, unsigned long* id, uint8_t* len, uint8_t* buf) {
// Acquire the bus in order to use SPI_TRANS_CS_KEEP_ACTIVE
esp_err_t ret = spi_device_acquire_bus(spi, portMAX_DELAY);
ESP_ERROR_CHECK(ret);
return res & MCP_STAT_RXIF_MASK;
send_cmd(spi, buffer_load_addr, true);
// Read id + length
{
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length = 8*5;
uint8_t data[5];
t.rx_buffer = data;
t.flags = SPI_TRANS_CS_KEEP_ACTIVE;
ret = spi_device_polling_transmit(spi, &t);
ESP_ERROR_CHECK(ret);
*id = (data[MCP_SIDH] << 3) + (data[MCP_SIDL] >> 5);
if ((data[MCP_SIDL] & MCP_TXB_EXIDE_M) == MCP_TXB_EXIDE_M) {
// Extended id
*id = (*id << 2) + (data[MCP_SIDL] & 0x03);
*id = (*id << 8) + data[MCP_EID8];
*id = (*id << 8) + data[MCP_EID0];
}
*len = data[4] & MCP_DLC_MASK;
}
// Read the data
{
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length = 8*(*len);
t.rx_buffer = buf;
ret = spi_device_polling_transmit(spi, &t);
ESP_ERROR_CHECK(ret);
}
// Make sure we release the bus
spi_device_release_bus(spi);
ESP_ERROR_CHECK(ret);
}
static uint8_t read_rx_tx_status(spi_device_handle_t spi) {
uint8_t ret = (read_status(spi) & (MCP_STAT_TXIF_MASK | MCP_STAT_RXIF_MASK));
static void write_id(spi_device_handle_t spi, const uint8_t addr, const unsigned long id) {
uint16_t canid = id & 0xFFFF;
uint8_t cmd[6];
cmd[0] = MCP_WRITE;
cmd[1] = addr;
cmd[MCP_SIDH+2] = canid >> 3;
cmd[MCP_SIDL+2] = (canid & 0x07) << 5;
cmd[MCP_EID0+2] = 0;
cmd[MCP_EID8+2] = 0;
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length = 8*6;
t.tx_buffer = cmd;
esp_err_t ret = spi_device_polling_transmit(spi, &t);
ESP_ERROR_CHECK(ret);
}
static bool available(uint8_t status) {
return status & MCP_STAT_RXIF_MASK;
}
static uint8_t read_rx_tx_status(uint8_t status) {
uint8_t ret = (status & (MCP_STAT_TXIF_MASK | MCP_STAT_RXIF_MASK));
ret = (ret & MCP_STAT_TX0IF ? MCP_TX0IF : 0) |
(ret & MCP_STAT_TX1IF ? MCP_TX1IF : 0) |
@ -302,190 +323,39 @@ static uint8_t read_rx_tx_status(spi_device_handle_t spi) {
return ret;
}
static void read_can_msg(spi_device_handle_t spi, uint8_t buffer_load_addr, unsigned long* id, uint8_t* ext, uint8_t* rtr_bit, uint8_t* len, uint8_t* buf) {
// Acquire the bus in order to use SPI_TRANS_CS_KEEP_ACTIVE
esp_err_t ret = spi_device_acquire_bus(spi, portMAX_DELAY);
ESP_ERROR_CHECK(ret);
// Send the command
{
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length = 8;
uint8_t cmd[] = { buffer_load_addr };
t.tx_buffer = cmd;
t.flags = SPI_TRANS_CS_KEEP_ACTIVE;
ret = spi_device_polling_transmit(spi, &t);
ESP_ERROR_CHECK(ret);
}
// Read id + length
{
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.length = 8*(5 + 8);
uint8_t data[5 + 8];
t.rx_buffer = data;
/* t.flags = SPI_TRANS_CS_KEEP_ACTIVE; */
ret = spi_device_polling_transmit(spi, &t);
ESP_ERROR_CHECK(ret);
*id = (data[MCP_SIDH] << 3) + (data[MCP_SIDL] >> 5);
*ext = 0;
if ((data[MCP_SIDL] & MCP_TXB_EXIDE_M) == MCP_TXB_EXIDE_M) {
// Extended id
// @TODO Do we need this for our application
*id = (*id << 2) + (data[MCP_SIDL] & 0x03);
*id = (*id << 8) + data[MCP_EID8];
*id = (*id << 8) + data[MCP_EID0];
*ext = 1;
}
*len = data[4] & MCP_DLC_MASK;
// @TODO Do we need this in our application
*rtr_bit = (data[0] & MCP_RTR_MASK) ? 1 : 0;
// Copy the data into the buffer
for (int i = 0; i < *len; ++i) {
buf[i] = data[5 + i];
}
}
// Read the data
/* { */
/* spi_transaction_t t; */
/* memset(&t, 0, sizeof(t)); */
/* t.length = 8*(*len); */
/* t.rx_buffer = buf; */
/* ret = spi_device_polling_transmit(spi, &t); */
/* ESP_ERROR_CHECK(ret); */
/* } */
// Make sure we release the bus
spi_device_release_bus(spi);
ESP_ERROR_CHECK(ret);
}
static void print_radio(can::Radio radio) {
ESP_LOGI(CAN_TAG, "RADIO");
if (radio.enabled) {
ESP_LOGI(CAN_TAG, "Enabled: %i", radio.enabled);
}
if (radio.muted) {
ESP_LOGI(CAN_TAG, "Muted: %i", radio.muted);
}
if (radio.cd_changer_available) {
ESP_LOGI(CAN_TAG, "CD Changer: %i", radio.cd_changer_available);
}
switch (radio.disk_status) {
case can::DiskStatus::Init:
ESP_LOGI(CAN_TAG, "CD: Init");
break;
case can::DiskStatus::Unavailable:
ESP_LOGI(CAN_TAG, "CD: Unavailable");
break;
case can::DiskStatus::Available:
ESP_LOGI(CAN_TAG, "CD: Available");
break;
default:
ESP_LOGW(CAN_TAG, "CD: Invalid");
break;
}
switch (radio.source) {
case can::Source::Bluetooth:
ESP_LOGI(CAN_TAG, "Source: Bluetooth");
break;
case can::Source::USB:
ESP_LOGI(CAN_TAG, "Source: USB");
break;
case can::Source::AUX2:
ESP_LOGI(CAN_TAG, "Source: AUX2");
break;
case can::Source::AUX1:
ESP_LOGI(CAN_TAG, "Source: AUX1");
break;
case can::Source::CD_Changer:
ESP_LOGI(CAN_TAG, "Source: CD Changer");
break;
case can::Source::CD:
ESP_LOGI(CAN_TAG, "Source: CD");
break;
case can::Source::Tuner:
ESP_LOGI(CAN_TAG, "Source: Tuner");
break;
default:
ESP_LOGW(CAN_TAG, "Source: Invalid");
break;
}
}
static void id_to_buf(const uint8_t ext, const unsigned long id, uint8_t* buf) {
uint16_t canid = id & 0xFFFF;
if (ext) {
buf[MCP_EID0] = canid & 0xFF;
buf[MCP_EID8] = canid >> 8;
canid = id >> 16;
buf[MCP_SIDL] = canid & 0x03;
buf[MCP_SIDL] += canid & 0x1C << 3;
buf[MCP_SIDL] |= MCP_TXB_EXIDE_M;
buf[MCP_SIDH] = canid >> 5;
} else {
buf[MCP_SIDH] = canid >> 3;
buf[MCP_SIDL] = (canid & 0x07) << 5;
buf[MCP_EID0] = 0;
buf[MCP_EID8] = 0;
}
}
static void write_id(spi_device_handle_t spi, const uint8_t addr, const uint8_t ext, const unsigned long id) {
uint8_t buf[4];
id_to_buf(ext, id, buf);
set_registers(spi, addr, buf, 4);
}
static void read_message(spi_device_handle_t spi) {
uint8_t status = read_rx_tx_status(spi);
unsigned long id;
uint8_t ext;
uint8_t rtr_bit;
uint8_t len;
uint8_t buf[8];
if (status & MCP_RX0IF) {
read_can_msg(spi, MCP_READ_RX0, &id, &ext, &rtr_bit, &len, buf);
} else if (status & MCP_RX1IF) {
read_can_msg(spi, MCP_READ_RX0, &id, &ext, &rtr_bit, &len, buf);
}
// @TODO Only do this if we actually are on AUX2
if (id == BUTTONS_ID) {
static MultiPurposeButton button_forward(avrcp::play_pause, avrcp::forward);
static MultiPurposeButton button_backward(nullptr, avrcp::backward);
can::Buttons buttons = *(can::Buttons*)buf;
button_forward.tick(buttons.forward);
button_backward.tick(buttons.backward);
} else if (id == VOLUME_ID) {
can::Volume volume = *(can::Volume*)buf;
avrcp::set_volume(ceil(volume.volume * 4.2f));
}
}
static void can_task(void* params) {
spi_device_handle_t spi = *(spi_device_handle_t*)params;
for (;;) {
if (available(spi)) {
read_message(spi);
uint8_t status = read_status(spi);
if (available(status)) {
uint8_t rx_tx_status = read_rx_tx_status(status);
unsigned long id;
uint8_t len;
uint8_t buf[8];
if (rx_tx_status & MCP_RX0IF) {
read_can_msg(spi, MCP_READ_RX0, &id, &len, buf);
} else if (rx_tx_status & MCP_RX1IF) {
read_can_msg(spi, MCP_READ_RX0, &id, &len, buf);
}
// @TODO Only do this if we actually are on AUX2
if (id == BUTTONS_ID) {
can::Buttons buttons = can::convert<can::Buttons>(buf, len);
static MultiPurposeButton button_forward(avrcp::play_pause, avrcp::forward);
button_forward.update(buttons.forward);
static MultiPurposeButton button_backward(nullptr, avrcp::backward);
button_backward.update(buttons.backward);
} else if (id == VOLUME_ID) {
can::Volume volume = can::convert<can::Volume>(buf, len);
avrcp::set_volume(ceil(volume.volume * 4.2f));
}
}
}
}
@ -539,16 +409,16 @@ void can::init() {
// @TODO Setup filter so we only receive messages that we are interested in
ESP_LOGI(CAN_TAG, "Init mask");
write_id(*spi, MCP_RXM0SIDH, 0, 0x3ff);
write_id(*spi, MCP_RXM1SIDH, 0, 0x3ff);
write_id(*spi, MCP_RXM0SIDH, 0x3ff);
write_id(*spi, MCP_RXM1SIDH, 0x3ff);
ESP_LOGI(CAN_TAG, "Init filter");
// @TODO WATCH OUT FOR ADDRESS
/* write_id(*spi, MCP_RXF0SIDH, 0, RADIO_ID); */
/* write_id(*spi, MCP_RXF0SIDH, 0, VOLUME_ID); */
write_id(*spi, MCP_RXF1SIDH, 0, BUTTONS_ID);
write_id(*spi, MCP_RXF1SIDH, BUTTONS_ID);
write_id(*spi, MCP_RXF0SIDH, 0, 0);
write_id(*spi, MCP_RXF0SIDH, 0);
ESP_LOGI(CAN_TAG, "Enter normal mode");
set_CANCTRL_mode(*spi, MODE_NORMAL);

View File

@ -17,7 +17,7 @@ const char* connection_state_to_str(esp_a2d_connection_state_t state) {
MultiPurposeButton::MultiPurposeButton(void(*short_press)(), void(*long_press)(), uint16_t threshold) : short_press(short_press), long_press(long_press), threshold(threshold) {}
// @TOOD Use a timer instead of amount of updates as this can be inconsistent (e.g. when in eco mode)
void MultiPurposeButton::tick(bool current) {
void MultiPurposeButton::update(bool current) {
if (current != previous && current) {
// Button just got presset
start = esp_timer_get_time();